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Abstract 

The diamond, Ionsdaleite and sodalite structures are 
generalized to N dimensions and described. Ring 
counts and coordination sequences for the N +  1- 
connected nets are given for N-< 6. Simple analytic 
expressions are given for coordination sequences for 
diamonds, sodalites and the primitive hypercubic 
lattice. Replacing the vertices of diamonds and 
sodalites by regular simplices produces rare (open) 
stable sphere packings; general expressions for the 
density of these are given. 

Introduction 

Recent developments in the theory of quasicrystals 
and incommensurate structures have led to an 
increased interest in crystallography in more than 
three dimensions (e.g. Janssen, 1986); this is an area 
that has also been of enormous stimulation to pure 
and applied mathematics although there the emphasis 
has been mainly on dense lattices and sphere packings 
(Conway & Sloane, 1988). 

In three-dimensional crystal chemistry the four- 
connected nets are of particular importance being, 
among many other things, the basis of some elemental 
structures and of the framework silicates and 
hydrates. The diamond structure has a special place 
among these as it is the only such net with all vertices 
(atoms), edges (bonds) and angles equivalent. Such 
a net I term regular (it is noted that graph theorists 
usually employ this term in a much less restrictive 
sense). In this paper some properties of the N- 
dimensional analogs of diamond and its simplest 
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polytype (in three dimensions, lonsdaleite) are 
described. Another important net is that of sodalite; 
it has all vertices and edges equivalent (quasiregular). 
Generalizations of this net are also described. Some 
reasons why the properties of these structures might 
be of interest are given below after some necessary 
basic definitions. 

Recent discussions of nets (Stixrude & Bukowinski, 
1990; O'Keeffe, 1991a) have focused particular atten- 
tion on coordination sequences (Brunner, 1979; 
Meier & Moeck, 1979) and ring statistics (Marians 
& Hobbs, 1990). A coordination sequence consists of 
the numbers, rig, of kth neighbors of a vertex, a kth 
neighbor being one for which the shortest path to the 
reference vertex consists of k edges. One can define 
(O'Keeffe, 1991a) a dimensionless local topological 
density 

k 
Pk = E n,/k3. (1) 

i=1 

The limit as k ~ oo is called the global topological 
density p~. The generalization to N dimensions is 
obvious. The number of neighbors riNk for an N- 
dimensional structure can sometimes be fit to a poly- 
nomial 

N-I  
rink = E aN, ki" (2) 

i=0 

In that event poo=aN.N_l/N. In this work the 
coefficients have been empirically determined from a 
count of a large number of neighbors, the number of 
shells counted being at least twice the number of 
coefficients. 

© 1991 International Union of Crystallography 
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The primitive rhombohedral cell of diamond con- 
tains two atoms (C1 and C2) and four bonds. The 
topology of the structure is completely determined 
once the bonds are specified. Let the reference unit 
cell be 000 and adjacent unit cells 100 etc. Atom C1 
is bonded to four C2 atoms in unit cells 000, 100, 010 
and 001. (It follows at once that C2 is bonded to C1 
in 000, i00, 0i0, 001.) N-dimensional diamond is 
defined topologically as forming N +  1 bonds from 
C1 to C2 in 0000 . . . ,  1000.. . ,  0100 . . . . . . .  The two- 
dimensional analog is the familiar honeycomb struc- 
ture, 63; primitive unit cells of this and the diamond 
structure are shown in Fig. 1. 

From a geometric point of view, in its most sym- 
metric form, the N nearest neighbors of an atom in 
the generalized diamond structure are at the vertices 
of a regular simplex (the N-dimensional solid with 
N + 1 vertices, each of which is joined to the N others 
by an edge). The N ( N + I ) / 2  bond angles are 
cos 1 ( - l / N )  and, for unit edge length, the next- 
nearest distance (the simplex edge length) is (2+ 
2 / N )  '/2. In three dimensions the diamond structure 
can be described as the structure obtained from a 
lattice sphere packing (cubic closest packing) com- 
bined with one half of the tetrahedral interstices. The 
analogous N-dimensional lattice sphere packing with 
simplicial interstices that is designated An (Conway 
& Sloane, 1988) can be similarly used to derive the 
N-dimensional diamond structure. 

The vertices of the sodalite net form the lattice 
complex labeled W* (Fischer & Koch, 1985). They 
consist of all the (irregular) tetrahedral interstices of 
the b.c.c, lattice (the lattice reciprocal to f.c.c.); these 
are the only interstices in this lattice. The sodalite net 
also arises as a space-filling packing of truncated 
octahedra. The vertices of the N-dimensional analog 
of sodalite are taken to be the simplicial interstices 
of the corresponding lattice reciprocal to AN, viz A*  
(Conway & Sloane, 1988). It is likewise a space filling 
by polytopes. 

Nets are frequently (partially) characterized by the 
nature of the shortest circuits contained in the angles 
(pairs of edges) of a vertex. In so'doing it is desirable 

Fig. 1. Primitive units for diamond (left) and 63. Small circles and 
light lines represent the vertices and edges of a primitive unit 
cell. 

(Marians & Hobbs, 1990) to identify fundamental 
circuits or rings, which are those in which the path 
between any pair of vertices on the circuit is a shortest 
path. There is a finite number of such rings per vertex; 
for example in the diamond and lonsdaleite structures 
there are two 6-rings at every angle for a total of 
twelve meeting at each vertex. As each 6-ring is shared 
with six vertices there are two 6-rings per vertex. In 
the sodalite structure there are two 4-rings and four 
6-rings at each vertex (1/2 a 4-ring and 2/3 a 6-ring 
per vertex). The sodalite net also has 32 12-rings 
meeting at each vertex. In contrast to the other rings 
mentioned in this paragraph, the 12-rings can be 
decomposed into a sum of smaller rings; in the ter- 
minology of Goetzke & Klein (1991) they are not 
strong rings. It is shown below that the N-dimensional 
nets can be similarly chracterized. 

One of the fundamental unsolved questions con- 
cerning nets is the nature of the constraints on the 
number and sizes of rings (Goetzke & Klein, 1991) 
and their influence on other properties such as density 
(Stixrude & Bukowinski, 1990). In two dimensions 
simple constraints on ring sizes are well known 
(O'Keeffe & Hyde, 1980). Three-dimensional nets can 
be divided into two classes. In the first class the net 
is derived from the edges and vertices of a space 
filling by polyhedra in which three polyhedra meet 
at an edge and four at a corner (the sodalite net is 
the simplest example). For such nets, constraints on 
the number and size of strong rings can be derived 
(O'Keeffe, to be published). The second class ofthree- 
dimensional net is that in which at least some of the 
angles contain more than one strong ring (this is not 
possible in two dimensions for topologically planar 
nets). For such nets (diamond is a simple example) 
constraints on ring sizes and numbers are much more 
difficult to derive, although useful empirical observa- 
tions can be made (Stixrude & Bukowinski, 1990). It 
might be expected that investigation of these topics 
in higher dimensions will eventually lead to insights 
in the more practical three-dimensional world. 

The diamond and sodalite structures are also of 
interest as the parents of rare (low-density) three- 
dimensional sphere packings (O'Keette, 1991 a). The 
term 'sphere packing' is used here to refer to an 
arrangement of equivalent (symmetry-related) 
spheres in contact, with not all contacts on the same 
hemisphere. The latter condition ensures that the 
sphere packing is stable. Here the analogous N- 
dimensional structures are described. 

The lattices AN and diamond 

Consider the N-dimensional lattice defined by a unit 
cell (a parallelotope) with all equal edges, a, and with 
all angles between the unit-cell vectors equal to rr/3. 
This is the N-dimensional generalization of a rhom- 
bus (2D) and rhombohedron (3D), here called a 



750 N-DIMENSIONAL DIAMOND, SODALITE AND RARE SPHERE PACKINGS 

rhombotope. The two-dimensional case is the familiar 
hexagonal lattice described with 3' = 60 ° rather than 
the more usual 3' = 120 °. The lattice is the well known 
AN described using a primitive cell. The following 
properties of the structure may readily be verified. 

(1) The lattice points A (0, 0 , . . . )  have N ( N +  1) 
equidistant neighbors. For N <-3, this is the densest 
lattice packing, but for N >  3 denser packings are 
known (Conway & Sloane, 1988). 

(2) Sites B at + ( x , x , . . . )  with x =  1 / ( N + I )  have 
N +  1 lattice points as nearest neighbors with d ( A -  
B) = a [ N~ (2 N + 2) ] 1/2 and at the vertices of a regular 
simplex. These are the simplicial interstices of the 
structure. 

(3) The site C at ½, ½,... is in an interstice with Z 
neighbors at a distance d away. For an ( N - 1 )  or 
N-dimensional structure, Z = N ! / [ ( N / 2 ) ! ( N / 2 ) ! ]  
and d = a ( N / 8 )  ~/2. Note that for seven and eight 
dimensions d ( A - A )  = d ( A - C )  = d ( C - C )  and the 
coordination number for C by A (and vice versa) is 
70. For N = 7 each atom has 70 + 7 x 8 = 126 equidis- 
tant neighbors; this is known to be the maximum 
number of equal spheres that can contact a central 
one in seven dimensions. 

(4) The unit-cell content ('volume') is a N ( N +  
1)1/2/2 N/2. 

N-dimensional diamond (or Si) can now be 
described in crystallographic terms in terms of the 
same unit cell with a shift of origin to a center of 
symmetry. For unit bond lengths, the unit-cell par- 
ameter is a = [ ( 2 N + 2 ) / N ]  ~/2. The atoms are in 
:t:(x, x , . . . ,  x) with x =  N / ( 2 N + 2 ) .  The number of 
vertices per unit content is, for unit edge length, 
r = 2 N N / 2 ( N +  1) -<N+~)/2. The N-dimensional 
(ideal) cristobalite structure, SiO2, is obtained by 
combining these positions with O at the centers of 
the edges at (½, ½, . . . ,  ½) and the N permutations of 
(½, ½, . . . ,  ½, 0). The O-atom packing (with 2N neigh- 
bors) is now an N-dimensional array of vertex- 
sharing simplices with the remaining space being 
comprised of truncated simplices. In three 
dimensions the O atoms are on the T lattice complex, 
and in two dimensions the structure is the familiar 
kagom6 pattern (tessellation 3.6.3.6). 

The number of neighbors riNk for the diamond net 
are empirically found to be given by a polynomial, 
(2), but with coefficients that depend on the parity 
of k and which are given in Table 1. 

It is also found that at each vertex there are N -  1 
6-rings, for a total of ( N + I ) N ( N - 1 ) / 2  6-rings 
meeting at each vertex. For N > 3 ,  10-rings also 
appear (Table 2). Counting circuits is easy, but with 
my computer algorithm it is tedious to check whether 
they are fundamental (i.e. rings); accordingly, as the 
number of n-circuits increases rapidly with both n 
and N, no search for n-rings wth n > 12 was made. 

It is noted in passing that filling all the simplicial 
interstices of A with B produces stoichiometry AB2 : 

Table 1. Coefficients aNi in the polynomial for rink, 
equation (2), for diamonds, even and odd refer to the 

parity of  k 

N aNo aN1 aN2 aN3 aN4 aN5 

3 even 2 0 5/2 
3 odd 3/2 0 5/2 
4 even 0 35/6 0 35/24 
4 odd 0 85/24 0 35/24 
5 even 2 0 35/8 0 21/32 
5 odd 45/32 0 63/16 0 21/32 
6 even 0 49/10 0 49/16 0 77/320 
6 odd 0 1253/320 0 91/32 0 77/320 

Table 2. Ring statistics for N-dimensional diamond 
( Nd)  and lonsdaleite ( Nl) 

The number s  are the n u m b e r  o f  rings conta in ing each  angle  with 
total n u m b e r  o f  n-circuits  per  angle  in parentheses .  Angles is the 
n u m b e r  of  angles per  vertex. For  the lonsdalei tes  the first set of  
angles conta ins  an edge a long c. 

N Angles 6 8 10 12 

2 3 1 (1) 0(0) 0(3) 0(1) 
3d 6 2 (2) 0 (4) 0 (24) 0 (56) 
31 3 2 (2) 0 (4) 0 (24) 0 (44) 

3 2 (2) 0 (4) 0 (20) 0 (73) 
4d 10 3(3) 0(12) 6(111) 0(507) 
41 4 3(3) 0(12) 0(111) 0(447) 

6 3(3) 0(12) 0(101) 0(549) 
5d 15 4(4) 0(24) 24(312) 0(2416) 
51 5 4 (4) 0 (24) 0 (312) 0 (2248) 

10 4 (4) 0 (24) 6 (294) 0 (2449) 
6d 21 5 (5) 0 (40) 60 (675) (7565) 
61 6 5 (5) 0 (40) 0 (675) 

15 5 (5) 0 (40) 24 (647) 

'N-dimensional fluorite'. The B structure is a sphere 
packing with N ( N +  1)/2 neighbors with B . . . B  dis- 
tance [ ( 2 N - 2 ) / N ]  ~/2 times the A - B  distance. For 
N =3, the B structure is just the primitive cubic 
lattice. 

A two-layer sphere packing and lonsdaleite 

Hexagonal closest packing ( N = 3 )  can be derived 
from the two-dimensional packing by stacking layers 
along a direction, c, perpendicular to the layers in a 
familiar way. In N dimensions we can analogously 
stack (N-1) -d imens iona l  layers in an orthogonal 
direction, which is still labeled c for convenience, to 
obtain an N-dimensional sphere packing with the 
same density and coordination number as AN. The 
unit-cell vectors a~, a 2 , . . . ,  aN-~ are of unit length 
and mutually at 60 ° to each other and the Nth 
lattice vector c is at right angles to all these with 
c = [ ( 2 N + 2 ) / N ]  ~/2. Centers of spheres are at 
+(x, x , . . . ,  ~) with x -- (N  - 1)/2N. The N- 
dimensional lonsdaleite structure is now obtained by 
combining the lattice positions with those of one-half 
of the simplicial interstices. If the origin is shifted to 
a center of symmetry of this new structure, it is 
formally described for unit edge length as a = 
[ ( 2 N + 2 ) / N ]  ~/2, c = ( 2 N + 2 ) / N  and atoms at 
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Table 3. Numbers of  kth neighbors, riNk , for N- 
dimensional lonsdaleite 

N nN2 nN3 nN4 HN5 nN6 nN7 nN8 nN9 HNI0 

3 12 25 44 67 96 130 170 214 264 
4 20 53 116 213 360 561 832 1171 1600 
5 30 96 252 546 1070 1901 3172 4971 7490 
6 42 157 482 1 2 0 7  2702 5417 10 092 17 505 28 860 

l - z )  with x = ( N - 1 ) / 2 N ,  + ( x , x , . . . ,  z; x , x , . . . , 2  
z = l / ( 4 N + 4 ) .  

The coord ina t ion  sequences for Ionsdaleites for 
the first ten shells are given in Table 3. They do not 
fit such simple polynomials  as do those for d iamonds  
a l though a simple expression for N = 3 has been given 
(O'Keette,  1991b). The topological  density Pk is 
always greater for lonsdaleites than for d iamonds  for 
k_>3. 

Sodalites 

The rhombotopica l  lattice with a = 1, a = 
cos- 1 ( _ 1 / N)  is a sphere packing with 2 N + 2 spheres 
in contact  and is body-centered cubic for N = 3. It is 
the lattice reciprocal to AN and is designated A * .  The 
unit-cell volume is a N ( N + 1 )tN -1)/2 N -  N/2. There are 
N!  simplicial interstices with coordinates  which are 
all the permutat ions  of  1 / ( N + I ) ,  2 / ( N + l ) ,  . . . ,  
N / ( N +  1). The distance from a lattice point  to an 
interstice is a [ ( N + 2 ) / 1 2 ]  1/2 and each interstice has 
N nearest neighbors at a distance of  a [ 2 / N ( N +  
1)]1/2. The net obtained by connect ing each simplicial 
interstice to its nearest neighbors is considered to be 
the N-dimens iona l  analog of  sodalite. For a net of  
unit edge length the number  of  points per unit  content  
is r = N!  2N/2(N+ 1) I/2-N 

The structure is now a tessellation of  space by 
congruent  polytopes with ( N +  1)! vertices whose 
centers are lattice points; al ternatively the polytopes 
are the Voronoi po lyhedra  of  the lattice. The vertices 
in the unit  cell are those of  the ( N -  1)-dimensional  
polytope in the ( 1 1 . . .  1) hyperplane.  The three- 
d imensional  structure is the familiar tessellation of  
space by t runcated octahedra.  

The number  of  kth neighbors  in N dimensions  riNk 
is given by (2) with the values of  the coefficients given 
in Table 4. The coefficient of  k N-~ is ( N +  1 ) / ( N -  
1) !; if that should be the case in general,  the topologi-  
cal density would be po~ = ( N  + 1 ) / N !  

The shortest  ring at an angle is either a square or 
a regular plane hexagon;  these are the only strong 
rings in the structure. At N + 1 angles the rings are 
hexagons and at the remaining ( N  + 1 ) ( N -  2) /2 
angles they are squares. There are also larger rings; 
for example,  the three-dimensional  structure has 32 
12-rings. Numbers  of  n-circuits and n-rings for n -< 12 
are given in Table 5. The higher-dimensional  struc- 
tures have even larger rings which have not been 
enumerated.  It might be noted that all edges are 

Table 4. Coefficients aNi in the polynomial for rink, 
equation (2), for sodalites 

N aNo aN I a,~2 aN3 QN4 aN5 

2 0 3 
3 2 0 2 
4 0 25/6 0 5/6 
5 2 0 15/4 0 1/4 
6 0 49/10 0 49/24 0 7/120 

Table 5. Ring statistics for sodalites 

The entry under Angles is the number of angles of each kind and 
the remaining entries in the row are the numbers of rings (all 
circuits in parentheses) containing one angle. 

N Angles 4 6 8 10 12 
3 2 1(1) 0(0) 0(6) 0(18) 4(90) 

4 0(0) I(1) 0(4) 0(17) 6(87) 
4 5 1 (1) 0(2) 2(20)  0(92) 2(522) 

5 0(0) 1 (2) 2 (15) 0(70) 6(452) 
5 3 1 (1) 0(4) 4(50)  0(356) 12(3500) 

6 1 (1) i (6) 2(38)  0(412) 8(31401 
6 0 (0) I (3) 4 (35) 0 (283) 14 (2432) 

6 7 1 (!) 2(10) 
7 1 (i) i (8) 
7 0 (0) I (4) 

equivalent  and are common  to two hexagons and 
N - 2  squares. The N = 2 case is just  6 3 again. The 
local topology of  a net of  congruent  vertices is best 
apprecia ted by mapping  the vertex onto a graph (let's 
call it the vertex graph) in which vertices of  the graph 
represent edges of  the net that  meet at one vertex of  
the net and in which the edges of  the vertex graph 
represent angles of  the net. For an n-connected  net, 
the vertex graph is the complete  graph K,+, .  Fig. 2 
shows how the three kinds of  angle in the five- 
d imensional  net map onto K6 and also illustrates that 
the edges of  the net (vertices of  the graph) are 
equivalent.  

Rare sphere packings 

One can replace each vertex of  the d iamond  structure 
by a regular simplex centered on the original vertex 
and with new vertices on the old edges. I call this 
process decoration (O'Keeffe,  1991a). In this way one 
obtains a new sphere packing with N +  1 times as 

1 2 

5 4 

Fig. 2. The vertex graph for five-dimensional sodalite. The vertices 
of the graph represent six edges meeting at a vertex of the sodalite 
net and edges of the graph represent angles of the net. Heavy 
lines represent angles containing only one 6-ring, medium lines 
represent angles containing both a 4- and a 6-ring and light lines 
represent angles containing only a 4-ring. 
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many vertices per cell and with cell edge increased 
by a factor I + [ 2 N / ( N + I ) ]  ~/2. The structure pro- 
duced in two dimensions is shown in Fig. 3; it is the 
familiar 3 .12  2 tessellation which is also well known 
to arise as the rarest two-dimensional sphere packing. 
The three-dimensional analog (with regular 
tetrahedra decorating the vertices of the diamond 
structure) was long thought to be the rarest sphere 
packing, but a rarer packing is now known (see 
below). The density is given by 

r =  2[N N / ( N +  1)N-']l/2{1 + [ 2 N / ( N +  1)]'/2} -N. 

(3) 

One can get a rarer packing by decorating the 
sodalite net similarly with simplices. The new vertices 
do not fall on the old edges but the squares are 
converted to regular octagons. The new density is 
then (for N > 2) 

r----  

( N +  l)!2 N/2 

( N + I ) N - I / 2  

x 1+ 
N + I  

- N  

(4) 

Coordination sequences for primitive 
hypercubic lattices 

It is of some interest to compare the number of kth 
neighbors for primitive hypercubic lattices, Z N, with 
those given for the nets above, link is found to be 
given by expressions similar to those for sodalites. In 
this case, liNk is just the number of distinct solutions 
of 

N 

Z Im, I = k (5) 
i = l  

where m, is any integer (including 0). It is almost 
trivial to find rink by direct enumeration using pencil 
and paper, although it is not entirely obvious to me 
that it should be given by a simple polynomial in k. 
Coefficients for (2) are given for the first ten 
dimensions in Table 6. The coefficient of k N-~ is 
2 N / ( N - 1 ) ! .  If that were the case in general, the 
topological density would be po~=2N/N! ,  i.e. 
2 N / ( N +  1) times that conjectured for sodalite. It is 
worth calling attention to the fact that ?INk rapidly 
gets rather large; rllO, l 0 = 4 7 8 0 0 0 8 .  This makes 
empirical evaluation of coordination sequences by 

This is possibly the rarest stable sphere packing in 
three dimensions (O'Keeffe, 1991a). It is unwise to 
speculate about higher dimensions as each new 
dimension seems to have surprises in store; however, 
in the absence of anything better, (4) can serve as an 
upper bound to the density of rarest sphere packings. 
Fig. 4 shows the density of the structures discussed 
and of densest lattice sphere packings (Conway & 
Sloane, 1988) as a function of dimensionality. The 
increasing range of densities hints at the richness of 
structures awaiting exploration in higher dimensions. 

Fig. 3. Production of 3.122 (open circles) by decoration of 63 
(filled circles) with triangles. 

log2 r 

-1. 
2 4 6 8 

N 

Fig. 4. The density (plotted as log2 r) as a function of dimensional- 
ity, N, for densest sphere packings (filled triangles), primitive 
hybercubic, Z N (small open circles), diamonds (open circles), 
sodalites (open squares), decorated diamonds (filled circles) and 
decorated sodalites (filled squares). The lines serve merely to 
guide the eye. 
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Table 6. Coefficients aNi in the polynomial for riNk , equation (2), for primitive hypercubic lattices ( Z N) 

N aNo aNi aN2 aN3 aN4 aN 5 aN6 aN7 aN8 aN9 

1 2 
2 0 4 
3 2 0 4 
4 0 16/3 0 8/3 
5 2 0 20/3 0 4/3 
6 0 92/15 0 16/5 0 8/15 
7 2 0 392/45 0 28/9 0 8/45 
8 0 704/205 0 352/45 0 64/45 0 16/315 
9 2 0 3272/315 0 76/15 0 8/15 0 4/315 

10 0 2252/315 0 5744/567 0 2408/945 0 160/945 0 4/1575 

computer difficult for more-complicated higher- 
dimensional structures. 

This work was supported by a grant (DMR 
8813524) from the National Science Foundation. 
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Abstract 

The structure of the protein tumour necrosis factor 
(TNF) was determined from crystals of space group 
P3121 which contain six copies of the TNF monomer 
per crystallographic asymmetric unit [Jones, Stuart 
& Walker (1989). Nature (London), 338, 225-228]. 
The nature of these crystals (relatively high crystallo- 
graphic symmetry coupled with multiple copies of 
the protein in the asymmetric unit) led to some 
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peculiarly challenging problems at several points in 
the structure determination. In particular, (1) self- 
rotation function calculations failed to yield clearly 
interpretable solutions, (2) the analysis of difference 
Patterson maps for heavy-atom derivatives required 
the development of a Patterson search program suite 
GROPAT. The redundancy in the asymmetric unit 
allowed refinement of poor-quality isomorphous 
phases at 4 A, resolution and phase extension from 4 
to 2 .9A resolution using real-space symmetry 
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